a15芯片相当于骁龙多少(苹果A15芯片和骁龙895处理器的性能比较)
淘宝搜:【天降红包222】领超级红包,京东搜:【天降红包222】
淘宝互助,淘宝双11微信互助群关注公众号 【淘姐妹】
苹果A15芯片和骁龙895处理器的性能比较
A15芯片的配置参数
苹果A15芯片采用了业界目前最先进的5nm制程工艺,集成了150亿个晶体管,内部包括6核CPU,其中包括2个高性能核心和4个高能效核心。苹果方面表示,A15芯片是智能手机中最快的CPU。
A15芯片与骁龙895处理器的性能比较
苹果A15芯片的性能表现相当于骁龙895处理器,目前最新的A15处理器在性能上已经相当于骁龙895的水平了。从制作工艺上来讲,A15处理器为用户提供了全新的第二代5nm制作工艺,能够有效降低芯片的功耗。目前还没有能与A15相媲美的骁龙芯片,最新的骁龙8gen1性能大概只有A15的60%。苹果A15芯片是手机中顶尖的芯片,而现在高通骁龙最好的芯片是骁龙8。
A16芯片的性能表现
未来的A16处理器有望突破第八代骁龙处理器,达到第九代骁龙的性能水平。
总结
苹果A15芯片采用了业界目前最先进的5nm制程工艺,集成了150亿个晶体管,内部包括6核CPU,能够胜任繁重任务,同时还能够节省电量。A15芯片的性能表现相当于骁龙895处理器,是目前最强的骁龙芯片之一。未来的A16处理器有望突破第八代骁龙处理器,达到第九代骁龙的性能水平。虽然目前还没有能与A15相媲美的骁龙芯片,但高通至少需要两年的时间才能弥补这一差距。
yolov5实现车牌识别 yolov5 yolo fast 精度能差多少
yolov5车牌识别程序源码,yolov5车牌识别也要分割车牌吗?,yolov5车牌识别数据集,yolov5车牌识别算法目录
YOLOv5实现车辆检测(含车辆检测数据集+训练代码)
1. 前言
2. 车辆检测数据集说明
(1)车辆检测数据集
(2)自定义数据集
3. 基于YOLOv5的车辆检测模型训练
(1)YOLOv5说明
(2)准备Train和Test数据
(3)配置数据文件
(4)配置模型文件
(5)重新聚类Anchor(可选)
(6)开始训练
(7)可视化训练过程
4. Python版本车辆检测效果
5. Android版本车辆检测效果
6.项目源码下载
本篇博客,我们将手把手教你搭建一个基于YOLOv5的车辆目标检测项目。目前,基于YOLOv5s的车辆平均精度平均值mAP_0.5=0.57192,mAP_0.5:0.95=0.41403,基本满足业务的性能需求。另外,为了能部署在手机Android平台上,本人对YOLOv5s进行了模型轻量化,开发了一个轻量级的版本yolov5s05_416和yolo【【微信】】,在普通Android手机上可以达到实时的检测和识别效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。
先展示一下Python版本车辆检测Demo效果:
【 整套项目下载地址】:YOLOv5实现车辆检测(含车辆检测数据集+训练代码)
【尊重原创,转载请注明出处】https://panjinquan.blog.csdn.net/【【微信】】tails/128099672
目前收集了约10W+的车辆检测数据集:UA-DETRAC车辆检测数据集+【【微信】】车辆检测数据集+BITVehicle车辆检测数据集:?
关于车辆检测数据集使用说明和下载,详见另一篇博客说明:《UA-DETRAC BITVehicle车辆检测数据集(含下载地址)》
如果需要增/删类别数据进行训练,或者需要自定数据集进行训练,可参考如下步骤:
- 采集图片,建议不少于200张图片
- 使用Labelme等标注工具,对目标进行拉框标注:labelme工具:GitHub - wkentaro/labelme: Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-le【【微信】】).
- 将标注格式转换为VOC数据格式,参考工具:labelme/labelme2voc.【【微信】】 ・ wkentaro/labelme ・ GitHub
- 生成训练集train.txt和验证集val.txt文件列表
- 修改engine/configs/【【微信】】.yaml的train和val的数据路径
- 重新开始训练
训练Pipeline采用YOLOv5:?https://【【微信】】.com/ultralytics/yolov5?, 原始代码训练需要转换为YOLO的格式,不支持VOC的数据格式。为了适配VOC数据,本人新增了Load【【微信】】用于解析VOC数据集,以便正常训练。另外,为了方便测试,还增加demo.py文件,可支持对图片,视频和摄像头的测试。
Python依赖环境,使用pip安装即可,项目代码都在Ubuntu系统和Windows系统验证正常运行,请放心使用;若出现异常,大概率是相关依赖包版本没有完全对应
下载车辆检测数据集,总共约10W+的图片:UA-DETRAC车辆检测数据集+【【微信】】车辆检测数据集+BITVehicle车辆检测数据集
考虑到UA-DETRAC车辆检测数据集比较大,其训练的模型的检测效果相对比较好,因此后续以UA-DETRAC车辆检测数据集为示例,说明训练过程。其他数据集训练,请根据自己环境,适当修改即可。
- 修改训练和测试数据的路径:engine/configs/【【微信】】.yaml
- 如果你想合并几个类别进行训练,比如将'[car','bus','van']看作一类,others看作另一类,则修改engine/configs/【【微信】】.yaml:
- ?如果你想合并所有类别为一个大类,进行训练: unique表示合并所有类为单独一个类别
官方YOLOv5给出了【【微信】】,YOLOv5m,YOLOv5s等模型。考虑到手机端CPU/GPU性能比较弱鸡,直接部署yolov5s运行速度十分慢。所以本人在yolov5s基础上进行模型轻量化处理,即将yolov5s的模型的【【微信】】通道数全部都减少一半,并且模型输入由原来的640×640降低到416×416或者320×320,该轻量化的模型我称之为【【微信】】trong>。从性能来看,yolov5s05比yolov5s快5多倍,而mAP下降了10%(0.57→0.47),对于手机端,这精度勉强可以接受。
下面是yolov5s05和yolov5s的参数量和计算量对比:
模型 | input-size | params(M) | GFLOPs | mAP0.5 |
【【微信】】trong> | 640×640 | 7.2 | 16.5 | 0.57192 |
【【微信】】trong> | 416×416 | 1.7 | 1.8 | 0.47022 |
【【微信】】trong> | 320×320 | 1.7 | 1.1 | 0.44788 |
官方yolov5s的Anchor是基于COCO数据集进行聚类获得(详见models/yolov5s.yaml文件)
??
对于yolov5s05的Anchor,由于输入大小640缩小到320,其对应的Anchor也应该缩小一倍:
?
一点建议:
- 官方yolov5s的Anchor是基于COCO数据集进行聚类获得,不同数据集需要做适当的调整,其最优Anchor建议重新进行聚类?。
- 当然你要是觉得麻烦就跳过,不需要重新聚类Anchor,这个影响不是特别大。如果你需要重新聚类,请参考engine/kmeans_anchor/demo.py文件
整套训练代码非常简单操作,用户只需要将相同类别的数据放在同一个目录下,并填写好对应的数据路径,即可开始训练了。
- 修改训练超参文件: data/hyps/hyp.scratch-v1.yaml (可以修改训练学习率,数据增强等方式,使用默认即可)
- 编辑train.sh脚本训练,训练yolov5s或轻量化版本yolov5s05_416或者yolo【【微信】】 (选择其中一个训练即可)
- 开始训练: bashtrain.sh
- 训练数据量比较大,训练时间比较长,请耐心等待哈
- 训练完成后,在模型输出目录中有个results.csv文件,记录每个epoch测试的结果,如loss,mAP等信息
训练模型收敛后,yolov5s车辆检测的mAP指标大约mAP_0.5=0.57192;而,yolo【【微信】】.5=0.47022左右;yolo【【微信】】.5=0.44788左右
训练过程可视化工具是使用Tensorboard,使用方法:
当然,在输出目录,也保存很多性能指标的图片
- 这是训练epoch的可视化图,可以看到mAP随着Epoch训练,逐渐提高
- 这是每个类别的F1-Score分数
- 这是模型的PR曲线
- 这是混淆矩阵:
demo.py文件用于推理和测试模型的效果,填写好配置文件,模型文件以及测试图片即可运行测试了
- 测试图片
- 测试视频文件
- ?测试摄像头
如果想进一步提高模型的性能,可以尝试:
- ?增加训练的样本数据: 目前只有10W+的数据量,建议根据自己的业务场景,采集相关数据,提高模型泛化能力
- 使用参数量更大的模型: 本教程使用的YOLOv5s,其参数量才7.2M,而YOLOv5x的参数量有86.7M,理论上其精度更高,但推理速度也较慢。
- 尝试不同数据增强的组合进行训练
已经完成Android版本车辆检测模型算法开发,APP在普通Android手机上可以达到实时的检测和识别效果,CPU(4线程)约30ms左右,GPU约20ms左右 ,基本满足业务的性能需求。详细说明请查看《Android实现车辆检测(含Android源码,可实时运行)》
Android Demo体验:
整套项目源码内容包含:车辆检测数据集 +?YOLOv5训练代码和测试代码
整套项目下载地址:YOLOv5实现车辆检测(含车辆检测数据集+训练代码)
(1)车辆检测数据集:UA-DETRAC BITVehicle车辆检测数据集(含下载地址)
- UA-DETRAC车辆检测数据集
- 【【微信】】车辆检测数据集
- BIT-Vehicle车辆检测数据集
(2)YOLOv5训练代码和测试代码(Pytorch)
- 整套YOLOv5项目工程的训练代码和测试代码
- 支持高精度版本yolov5s训练和测试
- 支持轻量化版本yolo【【微信】】和yolov5s05_416训练和测试
- 根据本篇博文说明,简单配置即可开始训练