华为p10换5000电池 华为p10能安装5000毫安的电池吗
淘宝搜:【天降红包222】领超级红包,京东搜:【天降红包222】
淘宝互助,淘宝双11微信互助群关注公众号 【淘姐妹】
因为华为主要是服务有钱人,比如p60广告词是“万境生辉”,打造与众不同。不像小米,多机型尽量使用同一模具或同一材料。
另一方面,早期华为主要是线下机,会有经销代理商批发商很多部门抽油水,手机就卖得贵。但这些商家也不是白拿的,必需囤货,一旦卖不出就要折价。所以对用户来说,其实很多人都是比官网便宜5分之1拿到货。
因为苹果手机敢卖5000元以上,摸着苹果手机的路,走就可以。
ai推荐出问题了?2023年推荐p10相关问题?
mems传感器前景怎样
来源:转载自「民生证券」,谢谢
微机电系统(Microelectromechanical Systems,简称 MEMS)是将微电子技术与精密机械技术结合发展出来的工程技术,尺寸在 1 微米到 100 微米量级,涵盖机械(移动、旋转)、光学、电子(开关、计算)、热学、生物等功能结构,主要分为传感器、致动器、三维结构器件等三大类。与 MEMS 类似,NEMS(Nanoelectromechanicalsystems,纳机电系统)是专注纳米尺度领域的微纳系统技术,只不过尺寸更小。
MEMS/NEMS 是涉及机械、半导体、电子、物理、生物、材料等学科的交叉领域,代表性器件有加速度计、陀螺仪、磁传感器、微型麦克风、压力计等。MEMS 技术主要包括硅基加工技术、高分子材料微纳加工技术、金属微纳加工技术等。硅基技术主要是标准 CMOS 集成电路加工工艺,包括表面微加工、深层刻蚀、体型微加工等。
相比传统的机械传感器与致动器,MEMS 具有微型化、重量低、功耗低、成本低、多功能等竞争优势,可通过微纳加工工艺进行批量制造、封装、测试,因而 MEMS/NEMS广泛应用于汽车、消费电子、工业、医疗、航空航天、通信等领域。
相比上一代产品,移动设备的每次更新换代要求功能增多和性能提升。随着消费电子产品尺寸的缩小,特别是智能手机“轻、薄”化,电子元器件的布局空间也随着减少,进而推动 MEMS 走向小型化。无论是单个 MEMS 器件,还是集成了加速度计、磁力计、陀螺仪、电子罗盘的MEMS 惯性导航单元,封装尺寸的趋势是封装面积在不断缩小,或者在面积相等的情况下从二维向三维拓展,集成更多的电子元件,赋予MEMS 更多的功能。
MEMS 小型化的趋势是走向 NEMS。MEMS 尺寸缩小带来微系统功能密度增加、成本下降、传感性能提升、低功耗等优势。MEMS器件的尺度是微米量级,NEMS 器件是纳米尺度。NEMS 的加工工艺难度相比 MEMS 要求更高,工艺设备更加复杂、精密。
目前 MEMS 技术处在从微米尺度向纳米尺度过渡阶段,NEMS 领域在惯性传感器和化学传感器已经有部分商用产品。根据Yoledeveloppement 的研究,单个 MEMS 的平均成本在 0.1 美元~5 美元之间,面积在 1mm2~15 mm2,单个 NEMS 的平均成本在 0.1 美元~1 美元之间,面积在 1 mm2~10 mm2。据 MEMSIC 的数据,2016 年美新半导体的消费类加速度计和磁传感器销售均价分别为 1.06 元、1.01 元。
?
MEMS 小型化的趋势是封装尺寸减小。在 MEMS 传感器的晶圆级封装开发工艺中,封装成本约占 MEMS 传感器总成本的 30%~40%,封装尺寸面积的减少能够降低 MEMS传感器的成本、提高传感器的灵敏度。根据市场调研机构 Yole Développement 的研究,MEMS 典型器件中,加速度计的封装管脚从 2009 年的 3×5 mm2 缩小至2014 年的 1.6×1.6 mm2,面积减小了 83%。
先进封装将推动 MEMS 与IC、RF 等器件的三维异质集成
1、拓展摩尔定律推动 MEMS 发展
拓展摩尔定律(MtM)是指通过系统级封装(SIP)等先进封装技术赋予微系统更多非数字电路功能,将射频、模拟电路、生物芯片、高压电源、MEMS 等器件进行系统集成,从而增加微系统附加价值的方法。MtM 器件融合了非数字与非电子的信息功能,包括机械、热学、声学、化学、光学、生物医疗等功能,极大拓展了 MEMS 器件的功能范围和应用领域。
拓展摩尔定律与摩尔定律是微电子技术发展的两条路径。拓展摩尔定律旨在为微系统/MEMS 提供多样化功能的高附加值技术,其应用领域是人和环境的互动以及物与物的连接交互;摩尔定律在 CMOS 主流技术基础上继续将存储器、逻辑器件、处理器的晶体管尺寸缩小,目前已经进入到7 纳米节点。拓展摩尔定律将带来 MEMS 器件、MCU、RF、电源等器件的集成,推动微系统走向更高集成密度、更小封装尺寸、更低功耗、更低成本。
2、封装工艺决定 MEMS 的性能和成本
封装技术是 MEMS 器件成功的关键,也是 MEMS 产业链(设计、加工、封装测试、
应用)中不可或缺的环节。MEMS 器件与外界环境的信息、能量、物质交换主要由微系统封装技术实现,封装的质量往往决定了 MEMS 的整体性能。MEMS 封装技术基于半导体封装技术,包括衬底形成、结构释放、电学互连、器件包封、微组装、测试及可靠性检验等后端工艺。
与 IC 封装类似,MEMS 封装要考虑封装尺寸、性能、可靠性、成本。MEMS 封装的特征是通过封装技术形成一个或多个腔体的活动结构,使得一种或多种物理量能够透过接口与外界交互。此外,MMES 封装还要重视力学支撑、环境隔离、与外界环境的交互接口、应力、气密性环境、隔离度、特殊信号引出、微结构失效等因素。因此 MEMS 封装工艺比 IC 封装更复杂,封装的类型更加多样化,考虑的因素更多。
MEMS 封装在 MEMS 成本中占比较大。根据 Yole developpement 的研究,MEMS成本中,封装约占 30%~40%,IC 约占40%~50%。因而封装环节支撑着 MEMS 技术的发展,同时也是 MEMS 成本占比较大的环节。
3、TSV 与 SIP 等先进封装将 MEMS 与模拟电路、微控制器、射频、电源等组件集成
终端系统厂商不仅仅满足于从 MEMS 传感器获取的原始数据,还希望所采集的多种传感数据经过采集、校准、压缩、优化后再发送给处理器,这样能减轻处理器的计算压力,满足终端在快速调取数据、态势感知、用户意图预测等方面的需求。
MEMS 的挑战来自于多种电子组件的集成。MEMS 与 IC、射频器件、电源等集成需要先进封装技术或 SOC 技术。MEMS 工艺来源于微电子技术,但其复杂的三维结构和功能在制造工艺上与主流的半导体 CMOS 技术还不能完全兼容,但通过先进封装技术可以进行 MEMS 的系统集成。以 MEMSIC 的加速度传感器为例,其采用标准 CMOS 集成电路工艺将 MEMS 元件和 ASIC 电路结构集成到单个芯片上,下游客户可以直接借助MCU 来取得加速度计的输出信号,因此无需额外搭配 A/D 转换器,降低了成本、减小了尺寸。
传统 MEMS 定律认为,“一种产品,一种工艺,一种封装”,每种 MEMS 器件要求特定的工艺和封装技术。但随着 MEMS 技术的不断发展成熟,MEMS 制造正与标准CMOS 工艺进行兼容,通过简化工艺流程或降低 MEMS 尺寸来降低 MEMS 的整体成本。
微系统功能不断增加、尺寸日益缩小的需求推动先进封装技术的发展。先进封装技术通过堆叠单芯片与其他元件并封装在一个外壳里,可实现半导体、MEMS 和其他元器件的三维异质集成,其技术包括系统级封装(SIP)、晶圆级封装(WLP)、硅穿孔(TSV)、三维芯片堆叠、2.5D 硅转接板。
三维异质集成是驱动 MEMS 传感器与其他微电子组件集成的技术。三维异质集成包括 CMOS 工艺、新材料、封装技术、软件算法。系统级封装技术与 TSV 电学互连技术赋能 MEMS 与其他元器件以实现三维集成。
TSV 的优点在于单组件上的 TSV 和三维堆叠技术将信号路径大大缩短,实现各个元件之间的电气互连,带来更低的功耗、更高的传输线带宽、更小的封装尺寸,能够集成多种电子组件,降低微系统的整体封装费用。
TSV 与 SIP 等先进封装技术用于 MEMS 封装能带来诸多好处。MEMS 与模拟接口电路、MCU、射频之间以往是并排在封装衬底上,TSV 通过硅转接板或硅衬底将 MEMS传感器叠加于模拟接口电路、MCU、射频上,SIP 再将所有元器件一体化集成,这能够大大减少封装面积,缩短 MEMS 与芯片之间的信号传输损耗,提高 MEMS 器件的整体性能。根据 Yole 的研究,博世将 TSV技术用于 MEMS 加速度计,能降低 55%的封装尺寸,拥有低至 0.8 毫米的封装厚度。
MEMS 传感器正走向传感融合,系统集成提升附加价值
1、多种传感器融合是发展趋势
MEMS 面临电子设备应用多元化、小型化、智能化的挑战,增加功能密度、提升精
度成为 MEMS 的重要驱动因素。MEMS的传统挑战是缩小器件尺寸或功耗,但仅仅尺寸缩小不再是传感器的唯一驱动因素。
MEMS 在消费电子领域遇到的挑战来自技术和市场。Yole developpement 认为,MEMS在消费电子中的技术挑战包括传感器性能/精度、传感器不可见/小体积设备,市场挑战是指传感器能提供个人/可定制对象的解决方案,并能为消费电子产品带来可感知的价值。
?以传感用户的移动位置信息为例,可穿戴设备需要感知四个自由度的线性加速度、旋转、重力、电子罗盘、计步器、活动监测与终端、运动探测等信息,涉及 MEMS 加速度计、MEMS 陀螺仪、MEMS地磁计以及微控制器和软件。因此将多种 MEMS 传感器进行功能集成是满足用户需求的重要发展方向。
用户需要全套传感器解决方案。从数据维度看,单品类传感器从单轴向三轴集成,数据采集从一维向多维转变,比如单轴加速度计向三轴加速度计演变;从传感器融合角度看,用户的单项需求采集需要多种传感器配合才能实现,比如惯性传感单元组合倾向于集成加速度计、陀螺仪、地磁计等 MEMS 传感器。
?2、传感融合是传感器融合为一体的关键技术
传感器融合应用的趋势是:从数据采集到多维度数据整合再演进到应用场景解读,从低精度传感器向高精度传感器演进,从离散传感器向智能传感器演变。
移动设备中常见的三类传感器的融合趋势:惯性类传感器将加速度计、陀螺仪、地磁计集成,形成9 轴惯性测量单元;环境类传感器将气体/微粒传感器、压力传感器、温/湿度传感器、麦克风集成在一起,组成环境传感组合;光学类传感器将可见光传感器、接近光/环境光、3D 视觉传感器、多频谱光传感器一体化集成,形成光学传感组合。
多种传感器融合的关键在于传感器软件和算法。每种传感器所采集的数据在传输之前需要经过校正与优化,多种传感器数据融合产生大量的原始数据,需要特定算法和微控制器进行处理。优化的算法和高效的微控制器能够产生用户所需的数据,减轻中央处理器的计算压力,提高传感数据的准确性和效率。
移动设备需要态势感知。传感器融合要求节点具备智能,智能传感器需要意识到用户的身份、位置、时间、活动。多种传感器融合是获取精确数据的前提,通过 MCU 对数据进行预处理能够最小化通信活动,占用的总线带宽最小化,从而获得更加精确的数据,实现高效的系统。根据 Semico Research 的研究,基于系统的传感融合将从 2012 年的 4 亿增长到 2016 年的 25 亿个。
传感器集成趋势:从离散器件向传感与数据处理一体化集成的智能传感器发展。MCU或板上系统将 MEMS 传感器所需的模数转换接口电路、信号处理电路、数据输出电路集成,系统级封装(SiP)或片上系统(SoC)再将 MCU 与 MEMS 传感器一体化集成,形成智能传感器节点。
3、传感器价值提升正从硬件走向软硬结合的系统集成
长期来看,MEMS 传感器的平均价格趋于下降。根据 Yole developpement 的研究,MEMS 传感器在 2000 年至 2007 年之间的平均价格以-6%的复合增速下降,其中,由于2007 年智能手机的快速增长带动 MEMS 传感器规模化放量,MEMS 传感器的平均价格在2007 年至 2013 年间以-13%的复合增速下降。
随着多功能传感器占比的提升以及传感器系统集成度的增加,MEMS 传感器的平均价格下降趋势有望减缓。在传感器融合的背景下,多种传感器的数据需要经过校准与处理,再通过算法模型对数据进行解读,比如运动监测数据与室内导航数据结合从而实现传感器对用户活动状态和地理位置的态势感知,传感器的应用价值随着软硬协同化发展得到提升。
传感器价值增长曲线从传感器走向系统集成。相比高附加值的 IC 器件,传感器的单品价值量远远不如 MCU、AP 等 IC 器件。MEMS 传感器制造商将多种单一功能传感器组合成多功能合一的组合传感器,再通过集成模数接口电路、微控制器(MCU)、应用处理器(AP)等芯片,传感器价值将完成二次升级。
根据 Yole developpement 的数据,单一功能传感器的平均价格不足 1 美元/个,多功能组合传感器的平均价格约 2.5~3 美元/个,集成了 MCU 与 AP(应用处理器)的传感器系统平均价格在 30~40 美元/个,比如 MEMS 加速度计的价格约为0.14 美元,麦克风的价格约为 0.19 美元。
MEMS 传感器生态系统形成。全球MEMS 产业生态包括 MEMS 制造商、芯片组供应商、软件供应商、系统/服务供应商等。随着传感器技术的成熟和平均价格的走低,MEMS生态的价值正从产品逐步走向软件和算法领域。
博世在 MEMS 领域的成功要素
(一)单项 MEMS 传感器技术储备丰富
1、博世在全球 MEMS 行业的市场竞争格局
博世(BOSCH)是全球 MEMS 领域的龙头。博世旗下有四个事业部:汽车科技、工业科技、能源与建筑科技、消费者商品。博世是全球最大的汽车电子技术供应商,2013年汽车电子业务占其销售额的 66%。自 2014 年起,凭借在汽车传感器的出货量优势,博世一举超越意法半导体,成为全球MEMS 行业的老大。
MEMS 领域的营业收入连续增长。2009年博世在 MEMS 方面的营收接近 5 亿美元,2015 年博世在 MEMS 方面的营业收入为 12.14 亿美元,6 年复合增长率为15.9%,营收规模和增速远超第二名意法半导体。全球 MEMS 的领先厂商还包括意法半导体、德州仪器、惠普、楼氏、应盛美等。
?2、博世是创新驱动的平台型企业
博世是全球领先的 MEMS 传感器、致动器及解决方案供应商。博世目前拥有约 42万的研究者与产品开发人员,位于全球 89 个国家。博世在过去 10 年投资了超过 350 亿欧元在研究和产品开发上。根据 Bosch Sensortec 发布的报告显示,每个工作日,博世平均申请 19 个专利。这使得博世成为世界领先的专利应用科技公司,同时也是德国首屈一指的高科技公司。
博世深耕 MEMS 领域超过 20 年。1995 年至 2005 年是 MEMS传感器渗透汽车电子领域的发展时期,博世在此期间研发的产品包括加速度计、角速度传感器、压力传感器、质量流量传感器等;得益于智能手机的快速发展,2005 年至 2015 年是 MEMS传感器进入消费电子领域的快速发展时期,博世在此期间研发的产品包括地磁传感器、陀螺仪、压力传感器、湿度传感器、组合传感器、专用传感器、MEMS 麦克风等;2015 年博世开始进入物联网领域,推出智能传感器、嵌入式软件与算法、定制化物联网传感器等。
博世 MEMS 技术全球领先,在研发史上创造了多个全球第一。2006 年博世推出全球尺寸最小的数字压力传感器,2007 年发布全球封装尺寸最小的数字压力传感器,2012 年推出全球最小的封装尺寸为 3×3 mm2 的陀螺仪,2015 年在全球率先推出第一个室内空气质量传感器以及智能传感器组合。
博世 MEMS 产品线丰富,涉及四个领域:运动传感、声学、连接与解决方案、汽车电子。博世发明了针对 MEMS 产品制造工艺的 DRIE(Deepreacti【【微信】】,深反应离子刻蚀)技术,该工艺奠定了博世在 MEMS 领域的产品工艺开发基础。
(二)多功能组合传感器带来单品价值提升
博世发展 MEMS 传感器的策略是多样化的传感器功能集成。以惯性传感器(三轴加速度计、三轴陀螺仪、三轴地磁计)为例,博世将三轴加速度计和三轴地磁计组合,通过封装形成六轴电子罗盘产品,将三轴加速度计和三轴陀螺仪组合,通过封装形成六轴惯性传感单元产品,六轴电子罗盘与三轴陀螺仪组合形成 9+3 个自由度的惯性传感组合。
?博世拥有宽广的 MEMS 传感器技术储备以及从低集成度到较高集成度的 MEMS 产品,其 MEMS 传感器主要分为 5 大系列:惯性、地磁计、环境、传感集群、麦克风。每个系列的 MEMS 传感器包括单一性能的传感器、多功能的传感器组合,能满足多个细分领域的客户需求。
MEMS 累计出货量接连创新高。自1995 年涉足 MEMS 以来,博世公司的 MEMS 累计出货量接连创下新高,从 1995 年到 2013 年 MEMS累计出货量接近 40 亿个。
?(三)系统集成能力是 MEMS 企业的核心竞争优势
MEMS 领域的系统集成能力不仅需要知道 MEMS 制造工艺,而且还需要掌握传感器相关的知识(软硬件协同设计、传感器集成功能、传感器数据融合)以及 MEMS 传感器应用领域相关的知识(应用领域背景知识、客户需求、除了传感器数据融合之外的知识)。
博世在 MEMS 传感器领域拥有极强的系统集成能力。惯性传感器组合方面,博世具备九轴、微控制器、传感器数据融合软件的系统集成能力;在环境传感器组合方面,博世拥有大气压力传感器、湿度传感器、温度传感器的集成能力;在声学传感器组合方面,博世的产品为声学麦克风、麦克风阵列控制,能够提供传感数据融合软件。
以博世六轴 MEMS 惯性传感器BMC050 为例进行分析,BNC050 采用 16 管脚的 LGA封装,尺寸为 3mm×3mm×0.95mm,通过 MEMS 封装技术集成了 ASIC 专用芯片、三轴加速度计、三轴地磁计。根据 Yole developpement 的研究,其成本构成如下:专用芯片(48%)、封装测试(35%)、MEMS(13%)、地磁计(4%)。
随着 MEMS 应用领域的拓展,宽泛的传感技术储备和传感器应用背景成为新型电子消费领域的必备。博世在 MEMS 传感器技术、传感器软硬协同能力、解决方案的集成能力方面具备雄厚的实力,从而能够满足不同层次、不同应用领域的客户需求。
博世构建了从 MEMS 传感器功能组合、MEMS 与芯片一体化集成、MEMS 辅助软件、数据与云系统的系统集成能力。除了单项传感器产品、多功能产品集成产品、软硬件配套解决方案之外,博世熟知 MEMS 传感器数据融合,建立了开放的软件开放平台和 AP接口,对传感器的应用领域有着深刻的理解。
MEMS 细分领域众多,下一个增长点是物联网
(一)政策加大力度支持传感器产业发展
国家出台系列政策大力支持 MEMS 与传感器发展。根据《“十三五”国家科技创新规划》《中国制造 2025 重点领域技术路线图》《十三五规划》《智能传感器产业三年行动指南(2017-2019 年)》《促进新一代人工智能产业发展三年行动计划(2018-2020年)》等政策文件,政策面从关键技术研发、产业应用等角度大力支持 MEMS 与传感器的发展。?
技术方面,政策重点支持新型传感器、传感器核心器件、传感器集成应用、智能感知、智能控制、微纳制造、MEMS、新材料传感器、智能蒙皮微机电系统等关键技术的研发攻关。?
应用领域方面,政策重点推进工业制造、数控机床、机器人、汽车、航空、农业机械、可穿戴设备、物联网、VR/AR 等领域的传感器发展与产业化。
《中国制造 2025 重点领域技术路线图》提出,在汽车电子控制系统方面,国产关键传感器国内市场占有率达到 80%,到 2020 年,国内企业将掌握传感器、控制器关键技术,供应能力满足自主规模需求,产品质量达到国际先进水平。
《智能传感器产业三年行动指南(2017-2019 年)》提出,到 2019 年,我国智能传感器产业规模达到 260 亿元;主营业务收入超十亿元的企业 5 家,超亿元的企业 20 家。
?(二)从互联网到万物互联,物联网是 MEMS 的第三波浪潮
1、连接从人与人到物与物:MEMS 产业逐渐发展壮大
过去 20 年是人类接入互联网的时代。根据 bosch 的数据,1995 年,世界人口约为 57亿,其中约有 0.7%的人口接入互联网;2005 年,世界人口约为 65 亿,其中约有 15%的人口接入互联网;2015 年,世界人口约为 73 亿,其中约有 75%的人口接入互联网。
电子设备互联现状:移动终端数量占比过半。根据 bosch 的数据,2015 年约有 65.93亿设备接入互联网,其中包括 0.62 亿汽车、0.19 亿远程医