淘姐妹

淘姐妹

SEAP(seaport)

手机 0
snapseed修图软件,seap是什么意思中文,seapseed修图软件免费下载,SeaPseed

蛋白表达定义 蛋白表达是指用模式生物如细菌、酵母、动物细胞或者植物细胞表达外源基因蛋白的一种分子生物学技术。在基因工程技术中占有核心地位。 编辑本段蛋白表达系统概述 蛋白表达系统是指由宿主、外源基因、载体和辅助成分组成的体系。通过这个体系可以实现外源基因在宿主中表达的目的。一般由以下几个部分组成: 1、宿主。表达蛋白的生物体。可以为细菌、酵母、植物细胞、动物细胞等。由于各种生物的特性不同,适合表达蛋白的种类也不相同。 2、载体。载体的种类与宿主相匹配。根据宿主不同,分为原核(细菌)表达载体、酵母表达载体、植物表达载体、哺乳动物表达载体、昆虫表达载体等。载体中含有外源基因片段。通过载体介导,外源基因可以在宿主中表达。 3、辅助成分。有的表达系统中还包括了协助载体进入宿主的辅助成分。比如昆虫-杆状病毒表达体系中的杆状病毒。 编辑本段蛋白表达系统分类及优劣分析 原核蛋白表达系统既是最常用的表达系统,也是最经济实惠的蛋白表达系统。原核蛋白表达系统以大肠杆菌表达系统为代表,具有遗传背景清楚、成本低、表达量高和表达产物分离纯化相对简单等优点,缺点主要是蛋白质翻译后缺乏加工机制,如二硫键的形成、蛋白糖基化和正确折叠,得到具有生物活性的蛋白的几率较小。 酵母蛋白表达系统以甲醇毕赤酵母为代表,具有表达量高,可诱导,糖基化机制接近高等真核生物,分泌蛋白易纯化,易实现高密发酵等优点。缺点为部分蛋白产物易降解,表达量不可控。 哺乳动物细胞和昆虫细胞表达系统主要优点是蛋白翻译后加工机制最接近体内的天然形式,最容易保留生物活性,缺点是表达量通常较低,稳定细胞系建立技术难度大,生产成本高。 编辑本段大肠杆菌表达系统 在各种表达系统中,最早被采用进行研究的是大肠杆菌表达系统,也是目前掌握最为成熟的表达系统,大肠杆菌表达系统以其细胞繁殖快速产量高、IPTG诱导表达相对简便等优点成为生产重组蛋白的最常用的系统。 对于表达不同的蛋白,需要采用不同的载体。目前已知的大肠杆菌的表达载体可分为非融合型表达载体和融合型表达载体两种。非融合表达是将外源基因插到表达载体强启动子和有效核糖体结合位点序列下游,以外源基因mRNA的AUG为起始翻译,表达产物在序列上与天然的目的蛋白一致。融合表达是将目的蛋白或多肽与另一个蛋白质或多肽片段的DNA序列融合并在菌体内表达。融合型表达的载体包括分泌表达载体、带纯化标签的表达载体、表面呈现表达载体、带伴侣的表达载体。 大肠杆菌表达系统优点在于遗传背景清楚、繁殖快、成本低、表达量高、表达产物容易纯化、稳定性好、抗污染能力强以及适用范围广等。 编辑本段酵母表达系统 酵母表达系统作为一种后起的外源蛋白表达系统,由于兼具原核以及真核表达系统的优点,正在基因工程领域中得到日益广泛的应用,应用此系统可高水平表达蛋白,且具有翻译后修饰功能,故被认可为一种表达大规模蛋白的强有力的工具。 常用的酵母表达系统: 一,酿酒酵母(Saccharomycescerevisiae)表达系统: 酿酒酵母(Saecharomycescerevisiae)在酿酒业和面包业的使用已有数千年的历史,被认为是GRAS(generally recognized as safe)生物,不产生毒素,已被美国FDA确认为安全性生物,但酿酒酵母难于高密度培养,分泌效率低,几乎不分泌分子量大于30 kD的外源蛋白质,也不能使所表达的外源蛋白质正确糖基化,而且表达蛋白质的C端往往被截短。因此,一般不用酿酒酵母做重组蛋白质表达的宿主菌 二,甲醇营养型酵母表达系统: 甲醇酵母表达系统是目前应用最广泛的酵母表达系统。目前甲醇酵母主要有汉森酵母属(Hansenula),毕赤酵母属(Pichia),球拟酵母属(Torulopsis)等,并以毕赤酵母属(Pichia)应用最多。 甲醇酵母的表达载体为整合型质粒,载体中含有与酵母染色体中同源的序列,因而比较容易整合入酵母染色体中,大部分甲醇酵母的表达载体中都含有甲醇酵母醇氧化酶基因―1(AOX1),在该基因的启动子(PAOX1)作用下,外源基因得以表达。甲醇酵母一般先在含*的培养基中生长。培养至高浓度。再以甲醇为碳源。诱导表达外源蛋白。这样可以大大提高表达产量。利用甲醇酵母表达外源性蛋白质其产量往往可达克级。与酿酒酵母相比其翻译后的加工更接近哺乳动物细胞,不会发生超糖基化。 酵母表达的特点酵母是一种单细胞低等真核生物,培养条件普通,生长繁殖速度迅速,能够耐受较高的流体静压,用于表达基因工程产品时,可以大规模生产,有效降低了生产成本。 编辑本段昆虫表达系统 昆虫表达系统是一类应用广泛的真核表达系统,它具有同大多数高等真核生物相似的翻译后修饰加工以及转移外源蛋白的能力。昆虫杆状病毒表达系统是目前国内外十分推崇的真核表达系统。利用杆状病毒结构基因中多角体蛋白的强启动子构建的表达载体,可使很多真核目的基因得到有效甚至高水平的表达。它具有真核表达系统的翻译后加工功能,如二硫键的形成、糖基化及磷酸化等,使重组蛋白在结构和功能上更接近天然蛋白;其最高表达量可达昆虫细胞蛋白总量的50%;可表达非常大的外源性基因(一200kD);具有在同一个感染昆虫细胞内同时表达多个外源基因的能力;对脊椎动物是安全的。由于病毒多角体蛋白在病毒总蛋白中的含量非常高,至今已有很多外源基因在此蛋白的强大启动子作用下获得高效表达。。常用的杆状病毒包括苜蓿银纹夜蛾核型多角体病毒(AcNPV)和家蚕型多角体病毒(BmNPV),常用的宿主细胞则来源于草地夜蛾Sf9细胞,用于表达外源基因的质粒来源于PUC系列,其含有一个多克隆位点和多角体蛋白启动子。[1] 杆状病毒系统的主要有点包括 1,组蛋白具有完整的生物学功能,如蛋白的正确折叠、二硫键的搭配 2,蛋白翻译后的加工修饰; 3,表达水平高,可达总蛋白量的50%; 4,可容纳大分子的插入片段; 5,能同时表达多个基因。主要缺点是外源蛋白表达处于极晚期病毒启动子的调控之下,这时由于病毒感染,细胞开始死亡。 编辑本段哺乳动物表达系统 哺乳动物细胞表达外源重组蛋白可利用质粒转染和病毒载体的感染。利用质粒转染获得稳定的转染细胞需几周甚至几个月时间,而利用病毒表达系统则可快速感染细胞,在几天内使外源基因整合到病毒载体中,尤其适用于从大量表达产物中检测出目的蛋白。哺乳动物细胞表达载体必须包含原核序列、启动子、增强子、选择标记基因、终止子和多聚核苷酸信号等控制元件。 根据目的蛋白表达的时空差异,可将表达系统分为瞬时、稳定和诱导表达系统。瞬时表达系统是指宿主细胞在导入表达载体后不经选择培养,载体DNA随细胞分裂而逐渐丢失,目的蛋白的表达时限短暂;瞬时表达系统的优点是简捷,实验周期短。稳定表达系统是指载体进入宿主细胞并经选择培养,载体DNA稳定存在于细胞内,目的蛋白的表达持久、稳定。由于需抗性选择甚至加压扩增等步骤,稳定表达相对耗时耗力。诱导表达系统是指目的基因的转录受外源小分子诱导后才得以开放。采用异源启动子、增强子和可扩增的遗传标记,可提高蛋白产量。 哺乳动物表达系统在蛋白的起始信号、加工、分泌、糖基化方面具有独特优势,适合表达完整的大分子蛋白。由哺乳动物细胞翻译后再加工修饰产生的外源蛋白质,在活性方面远胜于原核表达系统及酵母、昆虫细胞等真核表达系统,更接近于天然蛋白质,但构成复杂、操作技术要求高、表达产量不大、产率低,且有时会导致病毒感染等是该表达系统的不足之处。 编辑本段植物表达系统 植物能够表达来自动物、细菌、病毒以及植物本身的蛋白质易于大规模培养和生产,且在基因表达与修饰及安全性方面有特别的优势,因此利用植物生产外源蛋白质的研究展现了极其诱人的前景。多种抗体、酶、激紊、血浆蛋白和疫苗等都已通过基因工程的手段在植物的叶、茎、根、果实、种子以及植物细胞和器官中得到表达,然而提取与纯化始终是大规模利用植物生产重组蛋白的主要障碍。Doloressa等据内质网和内质网信号肚在蛋白质合成中的作用,把3种重组蛋白,即嗜热细菌来源的木聚糖酶、水母的绿色荧光蛋白和人胎盘分泌的碱性磷酸酶(SEAP)定位到质外体中,通过根分泌和叶分泌途径获得表达,从而建立了两种新的重组蛋白表达系统――植物根分泌和叶分泌,简化了分离和纯化程序,为利用转基因植物大规模生产重组蛋白提供了潜在的途径。虽然利用植物表达、生产外源性蛋白起步较晚,但目前已经能够利用植物生产多种医用、食用以及工业用蛋白及酶制剂。 总之,各种表达系统各有优缺点,使用大肠杆菌表达系统能够在较短时间内获得表达产物,且所需的成本相对较低;但目的蛋白常以包涵体形式表达,产物纯化困难,且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。酵母和昆虫细胞表达系统蛋白表达水平高,成本低,但翻译后加工修饰体系与哺乳动物不完全相同。哺乳动物表达系统产生的蛋白质更接近于天然状态,但表达量低,操作繁琐。因此,选择表达系统时,应充分考虑各种因素,如要表达蛋白的性质、生产成本、表达水平、安全性、表达周期等。随着对外源基因表达系统研究的不断深入,随着更多表达机理和影响因素的发现,相信在不久的将来,原核与真核两种表达系统在重组蛋白的生产研究中仍然都会占有一席之地,并将出现更多更加完善的表达系统。

什么是标记基因和报告基因

标记基因通常用来检验重组DNA载体转化成功与否,或者检测目的基因在植物细胞或组织中的定位。常用的标记基因是一些抗生素抗性基因,如卡那霉素抗性基因、潮霉素标记基因等。

如:某种具有氨苄抗性基因质粒(该基因即可认为标记基因),与外源DNA片段组合形成重组质粒,并被转入受体细胞后,就可以根据受体细胞是否具有氨苄抗性来判断受体细胞是否获得了目的基因。当用选择培养基(比如含有氨苄的培养基),来培养受体细胞时,能够在培养基中存活下来的受体细胞就可以认为是成功的导入了外源DNA,标记基因就起作用了。

作为报告基因,在遗传选择和筛选检测方面必须具有以下几个条件:(1)已被克隆和全序列已测定;(2)表达产物在受体细胞中不存在,即无背景,在被转染的细胞中无相似的内源性表达产物;(3)其表达产物能进行定量测定。目前常用的报告基因有氯霉素乙酰转移酶基因(cat)、荧光素酶基因(luc)、β-葡萄糖苷酸酶基因(gus)、分泌型碱性磷酸酶基因(seap)、绿色荧光蛋白基因(gfp)等。

磷酸酶(phosphatase)是一种能够将对应底物去磷酸化的酶,即通过水解磷酸单酯将底物分子上的磷酸基团除去,并生成磷酸根离子和自由的羟基。磷酸酶的作用与激酶的作用正相反,激酶是磷酸化酶,可以利用能量分子,如ATP,将磷酸基团加到对应底物分子上。在许多生物体中都普遍存在的一种磷酸酶是碱性磷酸酶。

基本介绍

中文名 :磷酸酶 外文名 :phosphatase 分类,酸性磷酸酶,碱性磷酸酶,发现,套用, 分类 磷酸酶可以被分为两类:碱性磷酸酶和酸性磷酸酶。 酸性磷酸酶 酸性磷酸酶的基本性质与功能 诱导并分泌酸性磷酸酶是植物应对低磷环境的重要适应性反应之一。酸性磷酸酶可以从不同的有机磷底物上水解磷酸基团,供植物吸收利用。大多数的植物酸性磷酸酶没有明显的底物特异性,可以水解的底物包括 RNA、DNA、3-磷酸*酸、磷酸己糖等。体外实验中,从拟南芥、番茄中纯化的酸性磷酸酶的酶活力都受到了缓冲液中高 Pi 浓度的抑制,进一步研究发现酸性磷酸酶水解产生的 Pi 可以负反馈抑制大多数酸性磷酸酶的活性。酸性磷酸酶也可以分解一些特殊的有机磷底物,产物可以显现特异的颜色,如 5-溴-4-氯-3-吲哚磷酸盐(5-Bromo-4-Chloro-3-Indolyl Phosphate,BCIP,蓝色)、萘酯磷酸盐(β-NaphthylAcid Phosphate,β-NAP/Fast black K,紫红色)、对硝基酚磷酸二钠(p-NitrophenolPhosphate,pNPP,黄色)。通过反应产物颜色的深浅,可以判断酸性磷酸酶的活性高低。运用这一方法可以筛选对低磷胁迫反应异常的突变体。低磷诱导的酸性磷酸酶可以分为两类:作用于细胞内的酸性磷酸酶和分泌到细胞外的酸性磷酸酶。二者的共同作用保证了植物更好地应对低磷胁迫。细胞内的酸性磷酸酶可以通过两个途径实现体内磷的再循环:一是将植物液泡内的有机磷转化为 Pi。正常情况下,植物中大部分的磷储存在液泡中,细胞质中的 Pi 含量维持在一定范围内。当植物受到低磷胁迫时,植物体内的 Pi 含量不断下降,液泡中正常情况下被高磷环境抑制的酸性磷酸酶的酶活力恢复,水解液泡中储存的有机磷并通过液泡膜上的磷转运蛋白向细胞质分泌,维持细胞质中 Pi 含量的动态平衡。另一个实现体内磷循环的途径是将衰老的组织中的磷活化再利用转运到幼嫩组织。Robinson 等人报导了,拟南芥紫色酸性磷酸酶 AtPAP26 就参与了衰老组织中磷的再利用过程。分泌型的酸性磷酸酶的主要作用是分解土壤环境中的有机磷底物释放出可以供植物直接吸收利用的 Pi。通常情况下,分泌型的酸性磷酸酶比细胞内的酸性磷酸酶更加稳定。分泌型的酸性磷酸酶的 pH 活性范围(活性高于 50%)是 4.0-7.6,温度活性范围(活性高于 80%)是 22℃-48℃。这保证了它们能够更高效、更持续地在复杂的土壤介质中发挥作用。有报导称,土壤中植物可以直接吸收利用的 Pi,80%来源于分泌到胞外的酸性磷酸酶对土壤中有机磷底物的分解,足以见得酸性磷酸酶的重要性。 分泌型的酸性磷酸酶按照其最终发挥作用的位置又可分为释放到环境介质中的酸性磷酸酶和附着在根表面的酸性磷酸酶。分泌到介质中的酸性磷酸酶相对而言更易于研究,是因为可以通过悬浮细胞培养或者幼苗培养的方法,收集液体培养基中的分泌蛋白。通过生化的方法富集、分离、鉴定出不同的酸性磷酸酶,并进行相关的遗传和生理分析。近些年通过类似的研究方法,科学家们已经从多种不同的物种中鉴定得到了许多酸性磷酸酶,这些物种包括白羽扇豆、菜豆、菸草、以及拟南芥。但附着在根表面的酸性磷酸酶相对而言比较难于研究,因为很难得到大量的蛋白进行生化分析,目前只有遗传学的方法是最为有效的研究手段。附着在根表面的酸性磷酸酶可以被一种人工合成的有机磷底物BCIP特异性地检测出来。在拟南芥根表面,覆盖一层含有0.01% BCIP、0.5%琼脂的溶液,室温放置过夜后,可以看到拟南芥根的表面被染成蓝色,蓝色的深浅程度反映出拟南芥根表面酸性磷酸酶活性的高低。根表面BCIP染色的方法被广泛套用于与低磷回响相关的突变体的筛选中,比如:pup1、pup2和pup3突变体先后在1998年和2004年被报导,遗憾的是它们各自的突变基因没有被鉴定出来。 酸性磷酸酶活性与有机磷的有效性 磷饥饿条件下, 植物被诱导分泌酸性磷酸酶;另一方面, 植物根系分泌酸性磷酸酶活性的增加又能够水解释放土壤中的有机磷化合物供植物生长。在植物体内, 酸性磷酸酶主要累积在液泡中, 大量研究表明, 酸性磷酸酶在调控植物磷营养方面有着非常重要的作用, 它在有机磷的代谢及再利用过程中也起著十分重要的作用, 其活性直接影响着有机磷有效性的高低。 在植物体内, 酸性磷酸酶对有机磷的再利用主要通过2 个功能来实现:1)将植物体内的有机磷转化为无机磷;2)将植株中的磷从衰老组织转运到幼嫩组织。梁宏玲的研究表明, 低磷胁迫下, 磷高效品种97081 体内酸性磷酸酶活性高于磷低效品种97009 , 低磷条件下97081 各部位酸性磷酸酶活性比97009 相应部位增加的幅度大, 植物体内磷素的分组结果也是97081 的相应部位的可溶性磷占总磷的比例高于97009 , 说明97081 在低磷条件下, 酸性磷酸酶受到强烈的诱导, 其活性大幅度增加。97081体内磷的代谢较97009 快, 可溶性磷占总磷的比例高, 更有利于加快磷的运输, 促进磷的再利用。类似的研究结果在以前的研究中已有报导。为植物提供不同形态的有机磷源, 植物的生长存在差异, 说明不同的有机磷对植物的有效性是有差异的。Yadav 等利用植酸钙镁、卵磷脂、*磷酸3 种形态的有机磷和可溶性无机磷作磷源研究9 种谷类作物和油料作物时发现, 同一时间各处理作物分泌酸性磷酸酶的活性顺序为:缺磷对照植酸钙镁卵磷脂*磷酸无机磷。酸性磷酸酶活性随有机磷水解难度的增加而增加。在以有机磷作磷源进行不同作物根系分泌A PA 研究时, 还出现了不同的结果。例如Adams 等以植酸态有机磷和RNA 作磷源对2 种白羽扇豆根系分泌酸性磷酸酶活性的研究发现, 按酸性磷酸酶活性大小排列各处理, Lupinus angust i folius L .顺序为:RNA 植酸态不施磷无机磷;而Lupinus albus L .顺序为:不施磷RNA 植酸态无机磷, 引起这种差异的原因还不清楚。因此, 在缺磷条件下, 根系分泌到土壤中的酸性磷酸酶主要水解何种形态有机磷, 土壤种哪种形态有机磷对植物有效性更高等问题都需要进一步研究。 酸性磷酸酶分泌的基因控制 分泌酸性磷酸酶是植物普遍存在的一种对低磷胁迫的适应性反应, 而这种适应性变化也是磷缺乏回响基因协调表达的结果, 通过回响基因产物的直接或间接作用, 促进磷素的吸收、转运和有效利用,有关酸性磷酸酶基因的研究已经取得了很大的进展。Goldstein 等研究发现, 番茄根系在低磷胁迫下可诱导分泌性酸性磷酸酶的产生, 并具有基因表达调节和系列信号传递系统。在白羽扇豆上也同样发现存在类似基因, 低磷胁迫能诱导其增强表达, 表明植物体内可能存在着低磷胁迫诱导的控制酸性磷酸酶分泌的基因。目前, 一些控制酸性磷酸酶分泌的基因已经在植物体内被定位和分离。LAS AP1 是从白羽扇豆分离到的编码分泌酸性磷酸酶的基因, 其全长为2187 bp , 包含有一个1 914bp 长的编码框, 编码由637个胺基酸残基组成的多肽, 胺基酸序列与外泌酸性磷酸酶的序列一致。 碱性磷酸酶 发现 碱性磷酸酶(alkaline phosphatase , EC 3 .1 .3 .1 ,AP)是非特异性磷酸单酯酶, 可以催化几乎所有的磷酸单酯的水解反应, 生成无机磷酸和相应的醇、酚、糖等, 还可以催化磷酸基团的转移反应, 且大肠杆菌A P 还是一种依赖亚磷酸盐的氢化酶。AP 存在于除高等植物外几乎所有的生物体内, 可直接参加磷代谢, 在钙、磷的消化、吸收、分泌及骨化过程中发挥了重要的作用。1911 年Levene 等、1912 年【【微信】】 等分离到(碱性)磷酸酯酶;1934 年, Davis 提出了碱性磷酸酶这一命名;1958 年,Ag ren 等用同位素标记的方法分离到磷酸丝氨酸;1961 年, Schwartz 在大肠杆菌中也发现了这一复合物, 并认为丝氨酸可能是AP 活性部位的组成成分;1962 年, Plocke 等证实AP 是一种金属酶;1981 年, Bradshaw 测定了大肠杆菌AP 胺基酸全序列, 并克隆了大肠杆菌AP 的基因phoA ;之后多种生物AP 的基因相继被克隆, 近些年对AP 的结构、作用机制和功能的研究越发深入, 使AP 的套用更加广泛。 套用 AP 在医学和分子生物学等领域有广泛的用途。在临床医学上, 测定血清中AP 的活力已成为诊断和监测多种疾病重要手段。AP 主要用于阻塞性黄疸、原发性肝癌、继发性肝癌、胆汁淤积性肝炎等的检查, 患这些疾病时, 肝细胞过度制造AP , 经淋巴道和肝窦进入血液, 同时由于肝内胆道胆汁排泄障碍, 反流入血而引起血清AP 明显升高。而血中肠型AP 明显升高可见于各种肠道疾病, 也有文献报导某些消化系统疾病、自身免疫性疾病及恶性肿瘤患者血中还可以出现免疫球蛋白复合物型AP , 此种A P 同工酶出现的机理尚未清楚。AP 同工酶作为肿瘤组织的一个标志也逐渐为人们所认识, 如肺脏、睾丸、卵巢、胰腺、结肠和淋巴组织等恶性肿瘤病人血清中含有PLA P 。骨型AP 作为骨代谢异常的标志物越来越受到临床重视;血清骨型A P 活力的定量测定可作为监测骨形成变化的有效参数, 在其他的骨代谢异常疾病(如骨软化症、佝偻病等)及早期甲状腺机能亢进的病人、慢性肾衰病人、接受肾脏移植的病人血清中的骨型AP 活性均有不同程度的改变, 对骨型AP 活性的检测及动态观察将为疾病的早期诊断、治疗效果的监测、病情预后等提供有效的依据。 在动物饲养和疾病诊断方面, AP 是反映成骨细胞活性、骨生成状况和钙、磷代谢的重要生化指标。钙、磷供应不足对动物的影响主要表现为骨结构异常、软骨病、食欲降低、生长迟缓、生产性能下降等。年幼动物血液AP 主要来自骨骼, 随着动物长大成熟和骨骼成年化, 来自骨骼的AP 逐渐减少。在动物营养研究中, 血清AP 活性常作为重要的生化检测指标协助评定日粮钙、磷水平的适宜程度。在动物疾病诊断上, 依据骨质疏松等骨骼疾病发生时AP 活性的变化规律, 可套用血清AP 活性来诊断因钙、磷及VD 失调所引起的骨质疾病。临床骨型AP 的检测比血钙测定体内钙营养水平更具敏感性, 因此, 国内外研究一致认为骨型AP 是反映骨改变全过程最正确的指标, 其特异性、灵敏度及准确性优于其它物质的检测。另外, 在动物患肝疾患、胃肠疾患、肾脏疾病和缺锌时, 血清AP 均会有改变, 如果继续对脏器特异性、A P 变化机制、AP 在不同动物体内生理功能深入研究, 会使AP 在兽医临床上意义更大。 在免疫学研究方面, 已广泛套用AP 标记抗体进行酶联免疫萤光反应(E LISA)和Western 印迹分析, 即将A P 与显色剂或去磷酸化后能发光的底物相互作用来揭示靶与检测酶复合物的存在, 与辣根过氧化物酶相比, AP 用作标记酶的优点是稳定性高、灵敏度高, 缺点是成本高、标记困难。在生物化学和分子生物学方面, 用AP 催化除去DNA 分子的5′末端磷酸基团以防止载体自连是基因克隆中的常规手段之一。用AP 脱去5′末端磷酸基团, 再用(γ-3 2P)A TP 标记5′末端, 可用于化学测序, RNA 测序和特异性DNA 或RN A 片段的图谱构建。套用AP 代替同位素标记核苷酸探针用于分子杂交。研究中最常用的AP 有:①细菌碱性磷酸酶(BAP);② SAP(来源于一种北极虾);③小牛肠碱性磷酸酶(CIAP);④胎盘碱性磷酸酶(PLAP)和分泌性碱性磷酸酶(SEAP), 后者是前者的C 末端短缺版, 与PLAP 相比, SEAP 没有PLAP 的C末端最后24 个胺基酸(这24 个胺基酸构成了与糖基化磷脂酰肌醇靶向锚定的区域)。另外, 将phoA基因与其它基因融合表达杂合蛋白可用于基因表达的研究。在1995 年还报导了以AP 作为识别元件的生物感测器。目前工业上一个普遍的套用是基于巴氏杀菌可破坏AP , 因此将AP 作为检验牛奶的巴氏灭菌的标志。

你好

你说的这种情况,一般都是由 系统软件、内存、硬盘引起的。

1 电脑不心装上了恶意软件,或上网时产生了恶意程序,建议用360 卫士 、金山卫士等软件,清理垃圾,查杀恶意软件,完成后重启电脑,就可能解决。实在不行,重装,还原过系统,可以解决软件引起的问题。

2 如果不能进入系统,可以开机后 到系统选择那里 按f8 选 起作用的最后一次正确配置(可以解决因驱动装错造成的错误)和带网络连接安全模式(进去后是有网络的,再用360软件弄下),可能就可以修复。

3 点 开始菜单 运行 输入 cmd 回车,在命令提示符下输入

for %1 in (%windir%\system32\*.dll) do regsvr32.exe /s %1 然后 回车。然后让他运行完,应该就可能解决。

4 最近电脑中毒、安装了不稳定的软件、等,建议全盘杀毒,卸了那个引发问题的软件,重新安装其他 版本,就可能解决. 再不行,重新装过系统就ok.

5 电脑机箱里面内存条进灰尘,拆开机箱,拆下内存条,清洁下内存金手指,重新装回去,就可能可以了。(c【【微信】】总结的,旧电脑经常出现这样的问题)

6 电脑用久了内存坏、买到水货内存、多条内存一起用不兼容等,建议更换内存即可能解决。

7 很多时候由于系统和显卡驱动的兼容性不好,也会出现这样的错误,建议你换个其他版本的显卡驱动安装,或换个其他版本的系统安装。

如果帮到你,请选为满意答案吧!!!


RC延时电路的 时间常数 和 延时时间(电压达到时间)和电容充放电时间计算和选取

rc延时电路原理图,rc延时电路设计,rc延时电路工作原理,rc延时电路时间计算

图一是最简单的RC延时电路,目的是延时点亮LED。R1给C1充电,等电容电压到达三极管基极导通电压大概0.7V时,三极管开通,LED点亮,二极管D1是让C1可以快速放电的作用。

延时时间?,其中V1为电源电压,V0为电容初始时刻电压,Vt为t时刻电容电压。在这个电路里,V1=5V,V0=0V,Vt=0.7V。延时大概1.5S。

电路虽然结构简单,但是要实现较大的延时就要选用大容量的电容,而且充电电阻R1不能太大,否则三极管不能处于开关状态。

图一

图二

再看图二,主要是多加了一个2.7V的稳压二极管D2,这时候情况就有所改观。可以看到,令三极管开通的电容电压提高了2.7V,也就是说Vt=0.7+2.7=3.4V。代入公式算得延时t=5.7S。本人在Multisim11.0中仿真结果不相上下。图二中R3电阻是为了把稳压二极管的反向漏电流导走,防止充电过程中三极管微导通。

图三

最后看图三,为了提高延时精度,使用了电压比较器。电容电压作为反相端输入,R3和R2对电源的分压作为同相端输入。初始状态时,V+ > V-?,比较器输出高电平,LED不亮;当电容电压升高到Vt时,V- > V+?,比较器输出低电平,LED被点亮。R5是正反馈电阻,可以有效消除输出抖动。要算出延时时间就要先算出Vt,初始状态下,比较器输出高电平,R5相当于与R3并联,于是算出。

这里分压电阻R3和R2采用了特殊的比值,使得取ln刚好为1,这样延时时间仅仅由R1和C1来决定,给计算带来了简便,同时与电源电压V1也没有任何关系。这个电路可以用在延时精度较高的场合。

全文转自:

https://mp.weixin.qq.com/s/19【【微信】】

转自&#【【网址】】/article/674313.html

一、电容充放电时间计算

1.L、C元件称为“惯性元件”,即电感中的电流、电容器两端的电压,都有一定的“电惯性”,不能突然变化。充放电时间,不光与L、C的容量有关,还与充/放电电路中的电阻R有关。“1UF电容它的充放电时间是多长?”,不讲电阻,就不能回答。?

RC电路的时间常数:τ=RC?充电时,uc=U×[1-e^(-t/τ)]

U是电源电压 ;放电时,uc=Uo×e^(-t/τ)

Uo是放电前电容上电压

RL电路的时间常数:τ=L/R?LC电路接直流,i=Io[1-e^(-t/τ)]

Io是最终稳定电流 ;LC电路的短路,

Io是短路前L中电流

2.?设V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。则:?Vt=V0 +(V1-V0)× [1-exp(-t/RC)] 或 t = RC × Ln[(V1 - V0)/(V1 - Vt)]?例如,电压为E的电池通过R向初值为0的电容C充电,V0=0,V1=E,故充到t时刻电容上的电压为: Vt=E × [1-exp(-t/RC)]?再如,初始电压为E的电容C通过R放电 , V0=E,V1=0,故放到t时刻电容上的电压为: Vt=E × exp(-t/RC)?又如,初值为1/3Vcc的电容C通过R充电,充电终值为Vcc,问充到2/3Vcc需要的时间是多少??V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t=RC × Ln[(1-1/3)/(1-2/3)]=RC × Ln2 =0.693RC?注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函数

3.?提供一个恒流充放电的常用公式:?Vc=I*?t/C.再提供一个电容充电的常用公式:Vc=E(1-e-(t/R*C))。RC电路充电公式Vc=E(1-e-(t/R*C))中的:-(t/R*C)是e的负指数项 。 关于用于延时的电容用怎么样的电容比较好,不能一概而论,具体情况具体分析。实际电容附加有并联绝缘电阻,串联引线电感和引线电阻。还有更复杂的模式--引起吸附效应等等。供参考。? ?

E是一个电压源的幅度,通过一个开关的闭合,形成一个阶跃信号并通过电阻R对电容C进行充电。E也可以是一个幅度从0V低电平变化到高电平幅度的连续脉冲信号的高电平幅度。电容两端电压Vc随时间的变化规律为充电公式Vc=E(1-e-(t/R*C))。其中的:-(t/R*C)是e的负指数项,这里没能表现出来,需要特别注意。式中的t是时间变量,小e是自然指数项。举例来说:当t=0时,e的0次方为1,算出Vc等于0V。符合电容两端电压不能突变的规律。对于恒流充放电的常用公式:?Vc=I*?t/C,其出自公式:Vc=Q/C=I*t/C。举例来说:设C=1000uF,I为1A电流幅度的恒流源(即:其输出幅度不随输出电压变化)给电容充电或放电,根据公式可看出,电容电压随时间线性增加或减少,很多三角波或锯齿波就是这样产生的。根据所设数值与公式可以算出,电容电压的变化速率为1V/mS。这表示可以用5mS的时间获得5V的电容电压变化;换句话说,已知Vc变化了2V,可推算出,经历了2mS的时间历程。当然在这个关系式中的C和I也都可以是变量或参考量。详细情况可参考相关的教材看看。供参考

4.?首先设电容器极板在t时刻的电荷量为q,极板间的电压为u.,根据回路电压方程可得:U-u=IR(I表示电流),又因为u=q/C,I=dq/dt(这儿的d表示微分),代入后得到:U-q/C=R*dq/dt,也就是Rdq/(U-q/C)=dt,然后两边求不定积分,并利用初始条件:t=0,q=0就得到q=CU【1-e^ -t/(RC)】这就是电容器极板上的电荷随时间t的变化关系函数。顺便指出,电工学上常把RC称为时间常数。相应地,利用u=q/C,立即得到极板电压随时间变化的函数,u=U【1-e^ -t/(RC)】。从得到的公式看,只有当时间t趋向无穷大时,极板上的电荷和电压才达到稳定,充电才算结束。但在实际问题中,由于1-e ^-t/(RC)很快趋向1,故经过很短的一段时间后,电容器极板间电荷和电压的变化已经微乎其微,即使我们用灵敏度很高的电学仪器也察觉不出来q和u在微小地变化,所以这时可以认为已达到平衡,充电结束。举个实际例子吧,假定U=10伏,C=1皮法,R=100欧,利用我们推导的公式可以算出,经过t=4.6*10^(-10)秒后,极板电压已经达到了9.9伏。真可谓是风驰电掣的一刹那。

二、电容的选取

一般电解电容在使用时,若无很大的纹波,耐压只要比实际值大20%即可,即7805的输出用10V已非常够,6V也行;7809用16V足够,用10V不会有大问题,三端稳压器的输出端不用接很大的电容,视实际负载而论,一般100mA接47-100uF就可,1A接470-1000uF,最好再接一只0.01-0.1uF的小瓷片或独石电容.

主滤波电容一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

滤波电容的选择经过整流桥以后的是脉动直流,波动范围很大。后面一般用大小两个电容,大电容用来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑;小电容是用来滤除高频干扰的,使输出电压纯净。电容越小,谐振频率越高,可滤除的干扰频率越高。

1、容量选择:(1)大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大;(2)小电容,凭经验,一般104即可。

别人的经验

1、电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

2、电源滤波中电容对地脚要尽可能靠近地。

3、理论上说电源滤波用电容越大越好,一般大电容滤低频波、小电容滤高频波。

4、可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段。具体案例: AC220-9V再经过全桥整流后,需加的滤波电容是多大的? 再经78LM05后需加的电容又是多大?前者电容耐压应大于15V,电容容量应大于2000微发以上。 后者电容耐压应大于9V,容量应大于220微发以上。

2、有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,

要求:(1)选择整流二极管;(2)选择滤波电容;(3)另:电容滤波是降压还是增压?

(1)因为桥式是全波,所以每个二极管电流只要达到负载电流的一半就行了,所以二极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输入交流电压有效值的1.2倍,所以你的电路输入的交流电压有效值应是20V,而二极管承受的最大反压是这个电压的根号2倍,所以,二极管耐压应大于28.2V。

(2)选取滤波电容:1、电压大于28.2V;2、求C的大小:公式RC≥(3--5)×0.1秒,本题中R=24V/0.5A=48欧,所以可得出C≥(0.00625--0.0104)F,即C的值应大于6250μF。

(3)电容滤波是升高电压。滤波电容的选用原则在电源设计中,滤波电容的选取原则是:? ?C≥2.5T/R;其中: C为滤波电容,单位为UF; T为频率, 单位为Hz; R为负载电阻,单位为Ω。? ?当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R。

3.滤波电容的大小的选取PCB制版电容选择?

印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用RC吸收电路来吸收放电电流。一般R取1~2kΩ,C取2.2~4.7μF,一般的10PF左右的电容用来滤除高频的干扰信号,0.1UF左右的用来滤除低频的纹波干扰,还可以起到稳压的作用。滤波电容具体选择什么容值要取决于你PCB上主要的工作频率和可能对系统造成影响的谐波频率,可以查一下相关厂商的电容资料或者参考厂商提供的资料库软件,根据具体的需要选择。至于个数就不一定了,看你的具体需要了,多加一两个也挺好的,暂时没用的可以先不贴,根据实际的调试情况再选择容值。

如果你PCB上主要工作频率比较低的话,加两个电容就可以了,一个虑除纹波,一个虑除高频信号。如果会出现比较大的瞬时电流,建议再加一个比较大的钽电容。其实滤波应该也包含两个方面,也就是各位所说的大容值和小容值的,就是去耦和旁路。原理我就不说了,实用点的,一般数字电路去耦0.1uF即可,用于10M以下;20M以上用1到10个uF,去除高频噪声好些,大概按C=1/f 。旁路一般就比较的小了,一般根据谐振频率一般为0.1或0.01uF。

说到电容,各种各样的叫法就会让人头晕目眩,旁路电容,去耦电容,滤波电容等等,其实无论如何称呼,它的原理都是一样的,即利用对交流信号呈现低阻抗的特性,这一点可以通过电容的等效阻抗公式看出来:Xcap=1/2лfC,工作频率越高,电容值越大则电容的阻抗越小.。在电路中,如果电容起的主要作用是给交流信号提供低阻抗的通路,就称为旁路电容;如果主要是为了增加电源和地的交流耦合,减少交流信号对电源的影响,就可以称为去耦电容;如果用于滤波电路中,那么又可以称为滤波电容;除此以外,对于直流电压,电容器还可作为电路储能,利用冲放电起到电池的作用。而实际情况中,往往电容的作用是多方面的,我们大可不必花太多的心思考虑如何定义。

本文里,我们统一把这些应用于高速PCB设计中的电容都称为旁路电容。电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好。但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略),这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性。因而一般大电容滤低频波,小电容滤高频波。这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高。

更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段。一般来讲,大电容滤除低频波,小电容滤除高频波。电容值和你要滤除频率的平方成反比。具体电容的选择可以用公式C=4Pi*Pi /(R * f * f )电源滤波电容如何选取,掌握其精髓与方法,其实也不难。

1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地,可以想想为什么?原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容虑低频,小电容虑高频,根本的原因在于SFR(自谐振频率)值不同,当然也可以想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了。

2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少?就算我知道SFR值,我如何选取不同SFR值的电容值呢?是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个,

1)器件Data sheet,如22pf0402电容的SFR值在2G左右,

2)通过网络分析仪直接量测其自谐振频率,想想如何量测?S21?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容和电感的很多特性是恰恰相反的。? 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。? ?电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。

大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为L=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。

采用电容滤波设计需要考虑参数:ESR? ?ESL耐压值? ?谐振频率滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns级的电流需求变化来说,这种延迟,也形成了实际的噪声。

所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需求的快速变化。? 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。

但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声